Highly Enantioselective Asymmetric Autocatalysis of Pyrimidin-5-yl Alkanol Induced by Chiral 1,3-Disubstituted Hydrocarbon Allenes

by Itaru Sato, Yohei Matsueda, Kousuke Kadowaki, Shigeru Yonekubo, Takanori Shibata¹), and Kenso Soai*

Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601 Japan

 $(tel: +81-3-5228-8261; \text{ fax:} +81-3-3235-2214; \text{ e-mail:} \text{soai@rs.kagu.tus.ac.jp})$

Dedicated to Professor Dieter Seebach on the occasion of his 65th birthday

1,3-Disubstituted chiral allenes without any heteroatoms act as chiral initiators in the addition of (i-Pr)₂Zn to pyrimidine-5-carbaldehyde to afford, in combination with the subsequent asymmetric autocatalysis, chiral pyrimidin-5-yl alkanols with up to 98% ee. The absolute configuration of the pyrimidin-5-yl alkanol formed depend on that of the chiral allene.

Introduction. - 1,3-Disubstituted allene is one of the representative chiral compounds without any stereogenic center [1]. Two consecutive π faces are twisted vertically to locate the terminal substituent on the re or si face of another π face. Recent progress in the synthesis of allenes made it possible to obtain optically active allenes by enantioselective synthesis $[2-4]$. Hence, applications of optically active allenes as synthetic intermediates have been reported [5]. However, to the best of our knowledge, the use of chiral allenes as chiral catalysts or chiral ligands has rarely been reported.

 R^1 , $R^2 \neq H$

Meanwhile, during our continuing study of asymmetric autocatalysis [6], it was found that asymmetric autocatalysis of pyrimidin-5-yl alkanol in the addition of (i- Pr_2 Zn to pyrimidine-5-carbaldehyde proceeds with amplification of ee [6] (for reviews on asymmetric autocatalysis with amplification of ee, see $[7a - f]$; for reviews including both autocatalytic and non-autocatalytic reactions with amplification of ee, see $[7g$ i]). Moreover, when $(i-Pr)_{2}Zn$ was reacted with pyrimidine-5-carbaldehyde in the presence of chiral initiators such as amino acids, helicenes, deuterated primary alcohols,

¹⁾ Present address: Department of Chemistry, Faculty of Science, Okayama University, Tsushima, Okayama, 700-8530 Japan.

quartz, and sodium chlorate, the absolute configuration of the pyrimidin-5-yl alkanol obtained depends on that of the chiral initiator [8].

We report herein the asymmetric autocatalysis of pyrimidin-5-yl alkanol in the presence of 1,3-disubstituted chiral allenes. Both enantiomers of highly enantiomerically enriched pyrimidin-5-yl alkanols were obtained from axially chiral allenes as the sole chiral source.

Results and Discussion. – Enantioselective addition of $(i-Pr)Zn$ to 2-(alkynyl)pyrimidine-5-carbaldehyde 1 in the presence of chiral allenes $2a - e$ were examined (Scheme). To an ice-cooled methylcyclohexane solution of 1 and chiral allene 2, a hexane solution of $(i-Pr)$ ₂Zn was slowly added. The solution was then diluted with toluene, and aldehyde 1 and $(i-Pr)$. Zn were added portionwise. Aqueous workup gave enantiomerically enriched 2-(alkynyl)pyrimidin-5-yl alkanol 3. The results are summarized in the *Table*. As shown in the *Scheme*, when $(+)$ - (S) -1,3-diphenylpropadiene **2a** was used as a chiral initiator, (R) -pyrimidin-5-yl alkanol 3 with 97% ee was obtained in 95% isolated yield $(Entry 1)$. On the other hand, when the other enantiomer of chiral allene $(-)$ - (R) -2a was used as chiral initiator, (S) -pyrimidin-5-yl alkanol 3 with 98% ee was obtained in 95% isolated yield (*Entry 2*). Thus, the absolute configuration of the pyrimidin-5-yl alkanol 3 obtained was dependent on that of the chiral allene. Toluene as a solvent (*Entries 3* and 4) gave results similar to those with methylcyclohexane as solvent *(Entries 1* and 2). The reaction in the presence of $(+)$ - or $(-)$ -1cyclohexyl-3-phenylpropadiene (2b) gave (R) - and (S) -pyrimidin-5-yl alkanol 3 with 97% ee, respectively (*Entries* 5 and 6). According to the *Lowe's* experimental rule and the subsequent studies based on circular dichroism, the absolute configuration of 1 phenylallenes and 1,3-dialkylallenes have been correlated with the sign of specific rotation [3a] [9].

Scheme. Enantioselective Addition of $(i-Pr)$) Zn to 2-(Alkynyl)peprinidine-5-carbaldehyde 1 in the Presence of Chiral Allenes 2a-e

3384

Therefore, allenes with *dextro* rotation may have the (S) configuration similar to the 1,3-diphenylpropadiene [10]. The derivatives of 1-phenylallenes were also used as chiral initiators in asymmetric autocatalysis. When chiral $(+)$ - (S) -4-methyl-1-phenylpenta-1,2-diene $2c$ [3a] was used as a chiral initiator, (R) -pyrimidin-5-yl alkanol 3 with 96% ee was formed in a yield of 96% (*Entry* 7). On the other hand, (S) -pyrimidin-5-yl alkanol with 94% ee was obtained in a yield of 94% in the corresponding reaction with $(-)$ - (R) -2c as a chiral initiator $(Entry 8)$. Similarly, chiral $(+)$ - and $(-)$ -1-phenylallene derivatives 2d with PhCH₂ substituents gave (R) - and (S) -pyrimidin-5-yl alkanol 3 with 94 and 95% ee, respectively (*Entries 9* and 10). In addition, nonconjugated allene was used as a chiral initiator. $(+)$ -1,5-Diphenylpentadiene (2e), *i.e.*, a chiral allene with two PhCH₂ substituents, afforded (R) -3 (*Entry 11*), whereas the other enantiomer $(-)$ -2e gave (S) -3 (*Entry 12*).

Entry	Allene 2					Pyrimidin-5-yl alkanol 3	
		\mathbb{R}^1	\mathbb{R}^2	$ee^{0/6}$ ^b)	$[a]_D$ (config.)	Yield/%	$ee\%$ (config.)
$I^{\rm c}$	2a	Ph	Ph	> 99.5	$+ (S)$	95	97(R)
2°)				> 99.5	$ (R)$	95	98(S)
3 ^d				> 99.5	$+ (S)$	92	93 (R)
4^{d}				> 99.5	$ (R)$	94	94(S)
5	2 _b	Ph	Cyclohexyl	90	$^{+}$	88	97(R)
6				94	-	90	97(S)
7	2c	Ph	$i-Pr$	91	$+ (S)$	96	96(R)
8				> 99.5	$ (R)$	94	94(S)
9	2d	Ph	PhCH ₂	43	$^{+}$	96	94(R)
10				56	-	92	95(S)
11	2e	CH ₂ Ph	PhCH ₂	97	$^{+}$	97	90(R)
12				92	-	97	97(S)

Table. Highly Enantioselective Synthesis of Pyrimidin-5-yl Alkanol 3 with Chiral 1,3-Disubstituted Allenes 2^a)

^a) Aldehyde 1 (1.3 mmol) and (i-Pr)₂Zn (2.7 mmol) were added in four portions. Molar ratio: allene 2/ pyrimidine-5-carbaldehyde $1/(i-Pr)$, Zn 0.0094/1.0/2.0. ^b) The ee value was determined by HPLC analysis with a chiral stationary phase. ^c) Molar ratio: allene 2a/pyrimidine-5-carbaldehyde 1/(i-Pr)₂Zn 0.037/1.0/2.0. ^d) Toluene was used instead of methylcyclohexane. Aldehyde 1 (1.1 mmol) and (i-Pr)₂Zn (2.2 mmol) were added in three portions. Molar ratio: allene $2a$ /pyrimidine-5-carbaldehyde $1/(i-Pr)$, Zn 0.024/1.0/2.0.

Conclusions. – As described, chiral allenes induce asymmetry in the enantioselective addition of $(i-Pr)_2Zn$ to 2-(alkynyl)pyrimidine-5-carbaldehyde 1. Highly enantiomerically enriched pyrimidin-5-yl alkanol 3 was obtained by combination asymmetric autocatalysis. In addition, chiral allenes $2a - e$ are hydrocarbon compounds without any heteroatom. Thus, these results are also significant in that chiral hydrocarbon compounds [8e,g] without any stereogenic center act as chiral initiators in asymmetric synthesis.

Financial support by Grant-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology and Japan Space Forum is gratefully acknowledged.

Experimental Part

Synthesis of Enantiomerically Enriched Allenes. Racemic allenes were synthesized according to the procedure in [11]. The racemic allenes obtained were resolved into enantiomerically enriched form by HPLC with a chiral stationary phase.

 $(+)$ -(S)- and $(-)$ -(R)-1,3-Diphenylpropa-1,2-diene (2a) [3a]. Racemic 2a was synthesized [11] and resolved into enantiomerically enriched form by HPLC (Chiralcel OD $(4 \times 250 \text{ mm})$; eluent: 1% i-PrOH in hexane; flow rate: 0.4 ml/min): t_R 12 min for (-)-isomer, 18 min for (+)-isomer.

 $(+)$ -*I*-Cyclohexyl-3-phenylpropa-1,2-diene (2b) [3g]. $[\alpha]_D^{28}$ = +299 (c = 0.47, EtOH) for the sample with 90% ee. HPLC (Chiralcel OD-H (4 \times 250 mm); eluent: 0.01% i-PrOH in hexane; flow rate: 0.4 ml/min): t_R 15 min for $(-)$ -isomer, 18 min for $(+)$ -isomer.

 $(-)$ -1-Cyclohexyl-3-phenylpropa-1,2-diene (2b) [3g]. $[\alpha]_D^{29} = -345$ (c=0.39, EtOH) for the sample with 92% ee.

 $(+)$ -(S)-4-Methyl-1-phenylpenta-1,2-diene (2c) [3a]. $[\alpha]_D^{32} = +139$ (c=0.33, CHCl₃) for the sample with 68% ee ([3a]: $[a]_D^{20} = +345$ (EtOH)). HPLC (*Chiralcel OD-H* (4 × 500 mm), eluent: 0.01% i-PrOH in hexane; flow rate: 0.4 ml/min): t_R 29 min for (-)-isomer, 32 min for (+)-isomer.

 $(-)$ -(R)-4-Methyl-1-phenylpenta-1,2-diene (2c) [3a]. $[\alpha]_D^{32} = -277$ (c=0.40, CHCl₃) for the sample with 98% ee.

 $(+)$ -1,4-Diphenylbuta-1,2-diene (2d). HPLC (Chiralcel OD (4 \times 250 mm), eluent: 0.001% i-PrOH in hexane, flow rate: 0.5 ml/min, r.t.) t_R 27 min for (-)-isomer, 31 min for (+)-isomer. Colorless oil. $[\alpha]_D^{29} = +105$ $(c=0.64, EtOH)$ for the sample with 38% ee. FT-IR (neat): 1948. ¹H-NMR (300 MHz, CDCl₃): 3.51 (*dd, J* = 7.3, 2.5, 2 H); 5.75 (td, J = 7.3, 6.5, 1 H); 6.20 (dt, J = 6.5, 2.5, 1 H); 7.2 – 7.4 (m, 10 H). ¹³C-NMR (75 MHz, CDCl₃): $36.0; 94.9; 95.4; 126.7; 127.1; 127.2; 128.9; 129.0; 135.0; 140.5; 206.1, HR-MS (FAB⁺); 206.1085 (M⁺; C₁₆H₁₄; calc.$ 206.1096.

 $(-)$ -1,4-Diphenylbuta-1,2-diene (2d). $[\alpha]_D^{29} = -211$ (c = 0.23, EtOH) for the sample with 86% ee.

 $(+)$ -1,5-Diphenylpenta-2,3-diene (2e). HPLC (Chiralcel OD $(4 \times 250 \text{ mm})$, eluent: 0.5% 2-propanol in hexane, flow rate: 0.5 ml/min): t_R 14 min for (+)-isomer, 16 min for (-)-isomer. Colorless oil. $[a]_D^{25} = +1.9$ (c= 1.75, EtOH) for the sample with 97% ee. FT-IR (neat): 1963. ¹H-NMR (300 MHz, CDCl₃): 3.3–3.4 (*m*, 4 H); 5.2 – 5.3 $(m, 2 H)$; 7.1 – 7.3 $(m, 10 H)$. ¹³C-NMR (75 MHz, CDCl₃): 35.6; 91.0; 126.1; 128.3; 128.6; 140.2; 205.1. Anal. calc. for C₁₇H₁₆: C 92.68, H 7.32; found: C 92.47, H 7.06.

 $(-)$ -1,5-Diphenylpenta-2,3-diene (2e). $[\alpha]_{D}^{25} = -4.87$ (c = 1.84, EtOH) for the sample with 92% ee.

Representative Procedure for the Enantioselective Addition of (i-Pr)₂Zn to Pyrimidine-5-carbaldehyde in the Presence of Chiral Allenes (Table, Entry 2). To a methylcyclohexane (1 ml) soln. of $(+)$ - (R) -1,3-diphenylpropa-1,2-diene (2a, > 99.5% ee; 9.6 mg, 0.05 mmol) and pyrimidine-5-carbaldehyde 1 (9.4 mg, 0.05 mmol) was added dropwise a 1M hexane soln. of $(i-Pr)Zn$ (0.15 ml, 0.15 mmol) over a period of 30 min at 0° . After stirring for 12 h at 0° , the mixture was diluted with toluene (1.9 ml). A toluene soln. (1M) of (i-Pr)₂Zn (0.2 ml, 0.2 mmol) and a toluene (1.0 ml) soln. of 1 (18.8 mg, 0.1 mmol) were added successively at 0° . After stirring the mixture for 30 min at 0° , toluene (7.5 ml), a toluene soln. (1M) of (i-Pr)₂Zn (0.8 ml, 0.8 mmol), and a toluene (2.0 ml) soln. of 1 (75.3 mg, 0.4 mmol) were added successively. Then, the mixture was stirred for further 30 min at 0° . Toluene (15 ml), toluene soln. (1M) of $(i-Pr)_{2}Zn$ (1.6 ml, 1.6 mmol), and a toluene (4.0 ml) soln. of 1 (150.6 mg, 0.8 mmol) were added successively, and the mixture was stirred at 0° for 30 min. The reaction was quenched by adding 5 ml of 1 M HCl, and the resulting mixture was neutralized with sat. aq. soln. of NaHCO₃ (15 ml). The mixture was filtered through Celite. The filtrate was extracted with AcOEt and dried (Na₂SO₄). The solvent was removed, and the residue was purified on TLC (hexane/AcOEt 2:1): (S) -1- $(2$ - $(2$ -(tert-Butyl)ethenyllpyrimidin-5-yl}-2-methylpropan-1-ol (3) with 98% ee was obtained in 95% yield (296.4 mg).

REFERENCES

- [1] S. Patai, 'The Chemistry of Ketenes, Allenes, and Related Compounds', John Wiley & Sons, New York, 1980; S. R. Landor, 'The Chemistry of the Allenes', Academic Press, London, 1982; H. F. Schuster, G. M. Coppola, 'Allenes in Organic Synthesis', John Wiley & Sons, New York, 1984.
- [2] C. J. Elsevier, in 'Methods of Organochemistry', 4th ed., Ed. G. Helmchen, R. W. Hoffmann, J. Mulzer, E. Schaumann, Thieme Verlag, Stuttgart, 1995, Vol. E 21a, pp. 537 - 566.
- [3] a) C. J. Elsevier, P. Vermeer, J. Org. Chem. 1989, 54, 3726; b) A. Alexakis, I. Marek, P. Mangeney, J. F. Normant, J. Am. Chem. Soc. 1990, 112, 8042; c) T. Mukaiyama, M. Furuya, A. Ohtsubo, S. Kobayashi, Chem. Lett. 1991, 989; d) M. Aso, I. Ikeda, T. Kawabe, M. Shiro, K. Kanematsu, Tetrahedron Lett. 1992, 39,

5787; e) Y. Nishibayashi, J.-D. Singh, S.-i. Fukuzawa, S. Uemura, J. Org. Chem. 1995, 60, 4114; f) I. Ikeda, K. Honda, E. Osawa, M. Shiro, M. Aso, K. Kanematsu, J. Org. Chem. 1996, 61, 2031; g) A. G. Myers, B. Zheng, J. Am. Chem. Soc. 1996, 118, 4492; h) K. A. Reynolds, M. G. Finn, J. Org. Chem. 1997, 62, 2574; i) M. Franck-Neumann, D. Martina, D. Neff, Tetrahedron: Asymmetry 1998, 9, 697; j) H. Ohno, A. Toda, Y. Miwa, T. Taga, N. Fujii, T. Ibuka, Tetrahedron Lett. 1999, 40, 349; k) T. Satoh, Y. Kuramochi, Y. Inoue, Tetrahedron Lett. 1999, 40, 8815; l) Z. Wan, S. G. Nelson, J. Am. Chem. Soc. 2000, 122, 10470; m) D. J. Fox, J. A. Medlock, R. Vosser, S. Warren, J. Chem. Soc., Perkin Trans. 1, 2001, 2240.

- [4] P. Stang, A. E. Learned, J. Org. Chem. 1989, 54, 1781; W. de Graaf, J. Boersma, G. van Koten, C. J. Elsevier, J. Organomet. Chem. 1989, 378, 115; K. Tanaka, K. Otsubo, K. Fuji, Tetrahedron Lett. 1996, 37, 3735; P. H. Dixneuf, T. Guyot, M. D. Ness, S. M. Roberts, Chem. Commun. 1997, 2083; Y. Naruse, H. Watanabe, Y. Ishiyama, T. Yoshida, J. Org. Chem. 1997, 62, 3862; K. Mikami, A. Yoshida, Angew. Chem., Int. Ed. 1997, 36, 858; Y. Noguchi, H. Takiyama, T. Katsuki, Synlett, 1998, 543; A. Tillack, C. Koy, D. Michalik, C. Fisher, J. Organomet. Chem. 2000, 603, 116; Z. K. Sweeney, J. L. Salsman, R. A. Andersen, R. G. Bergman, Angew. Chem., Int. Ed. 2000, 39, 2339; M. Oku, S. Arai, K. Katayama, T. Shioiri, Synlett 2000, 493; C. Schultz-Fademrecht, B. Wibbeling, R. Fröhlich, D. Hoppe, Org. Lett. 2001, 3, 1221; J. W. Han, N. Tokunaga, T. Hayashi, J. Am. Chem. Soc. 2001, 123, 12915.
- [5] O. W. Gooding, C. C. Beard, D. Y. Jacson, D. L. Wren, G. F. Cooper, J. Org. Chem. 1991, 56, 1083; E. M. Carreira, C. A. Hastings, M. S. Shepard, L. A. Yerkey, D. B. Millward, J. Am. Chem. Soc. 1994, 116, 6622; M. S. Shepard, E. M. Carreira, J. Am. Chem. Soc. 1997, 119, 2597; M. Node, K. Nishide, T. Fujiwara, S. Ichihashi, Chem. Commun. 1998, 2363; V. M. Arredondo, S. Tian, F. E. McDonald, T. J. Marks, J. Am. Chem. Soc. 1999, 121, 3633; J. D. Ha, J. K. Cha, J. Am. Chem. Soc. 1999, 121, 10012; J.-F. Poisson, J. F. Normant, J. Am. Chem. Soc. 2001, 123, 4639; J. A. Marshall, M. M. Yanik, J. Org. Chem. 2001, 66, 1373; R. K. Dieter, H. Yu, Org. Lett. 2001, 3, 3855.
- [6] K. Soai, T. Shibata, H. Morioka, K. Choji, Nature 1995, 378, 767; T. Shibata, H. Morioka, T. Hayase, K. Choji, K. Soai, J. Am. Chem. Soc. 1996, 118, 471; T. Shibata, S. Yonekubo, K. Soai, Angew. Chem., Int. Ed. 1999, 38, 659; I. Sato, D. Omiya, K. Tsukiyama, Y. Ogi, K. Soai, Tetrahedron: Asymmetry 2001, 12, 1965; I. Sato, T. Yanagi, K. Soai, Chirality 2002, 14, 166.
- [7] a) K. Soai, Enantiomer 1999, 4, 591; b) K. Soai, T. Shibata, I. Sato, Acc. Chem. Res. 2000, 33, 382; c) K. Soai, I. Sato, T. Shibata, Chem. Rec. 2001, 1, 321; d) C. Bolm, F. Bienewald, A. Seger, Angew. Chem., Int. Ed. 1996, 35, 1657; e) M. Avalos, R. Babiano, P. Cintas, J. L. Jiménez, J. C. Palacios, Chem. Commun. 2000, 887; f) H. Buschmann, R. Thede, D. Heller, Angew. Chem., Int. Ed. 2000, 39, 4033; g) C. Girard, H. B. Kagan, Angew. Chem., Int. Ed. 1998, 37, 2922; h) B. L. Feringa, R. A. van Delden, Angew. Chem., Int. Ed. 1999, 38, 3418; i) K. Mikami, M. Terada, T. Korenaga, Y. Matsumoto, M. Ueki, R. Angeland, Angew. Chem., Int. Ed. 2000, 39, 3532.
- [8] a) T. Shibata, J. Yamamoto, N. Matsumoto, S. Yonekubo, S. Osanai, K. Soai, J. Am. Chem. Soc. 1998, 120, 12157; b) K. Soai, S. Osanai, K. Kadowaki, S. Yonekubo, T. Shibata, I. Sato, J. Am. Chem. Soc. 1999, 121, 11235; c) I. Sato, K. Kadowaki, K. Soai, Angew. Chem., Int. Ed. 2000, 39, 1510; d) S. Tanji, A. Ohno, I. Sato, K. Soai, Org. Lett. 2001, 3, 287; e) I. Sato, R. Yamashima, K. Kadowaki, J. Yamamoto, T. Shibata, K. Soai, Angew. Chem., Int. Ed. 2001, 40, 1096; f) I. Sato, K. Kadowaki, Y. Ohgo, K. Soai, H. Ogino, Chem. Commun. 2001, 1022; g) I. Sato, S. Osanai, K. Kadowaki, T. Sugiyama, T. Shibata, K. Soai, Chem. Lett. 2002, 168.
- [9] G. Lowe, Chem. Commun. 1965, 411; P. Crabbé, E. Velarde, H. W. Andersons, S. D. Clark, W. R. Moore, A. F. Drake, S. F. Mason, Chem. Commun. 1971, 1261; R. Rossi, P. Diversi, Synthesis 1973, 25; C. J. Elsevier, P. Vermeer, A. Gedanken, W. Runge, J. Am. Chem. Soc. 1985, 107, 2537; W. Smadja, Chem. Rev. 1983, 83, 263.
- [10] J. M. Walbrick, J. W. Wilson, W. M. Jones, J. Am. Chem. Soc. 1968, 90, 2895; S. F. Mason, G. W. Vane, Tetrahedron Lett. 1965, 1593.
- [11] W. von E. Doering, K. Hoffmann. J. Am. Chem. Soc. 1954, 76, 6162; W. von E. Doering, P. M. LaFlame, Tetrahedron, 1958, 2, 75.

Received June 14, 2002